CONFIDENTIAL

NACA - Langley

8- BY 14-FOOT GUST TUNNEL

The gust tunnel is unconventional in character. The apparatus consists of a catapult for launching dynamically scaled models in steady flight, a tunnel to provide a jet of air of known characteristics to simulate a gust, curtains for stopping and catching the model after traversing the gust, and suitable instruments for recording the reactions of the models in the simulated gust. Supplementary equipment includes a traveling dynamic balance for determining the lift, drag, and moment of restrained models and the aerodynamic forces acting on the component parts of an airplane in unsteady flow. The gust tunnel provides means of determining the reactions of dynamically scaled models in known gusts under closely controlled conditions and may be used as follows: To calibrate airplanes which have been used as instruments in investigations of atmospheric turbulence or upon which a significant amount of gust load data has been obtained; to test special models for studying unsteady flow phenomena; to predict the gust load factor for new designs; and to test gust alleviation devices. The traveling dynamic balance will be used to verify theoretical work and to determine the behavior in unsteady flow for cases which theoretical analysis is either impractical or of doubtful value.

The pertinent characteristics of the gust tunnel are as follows:

(1) Characteristics of catapult

Type
Speed range, mph
Accelerating distance
Model size handled
Model weight, maximum

Compressed air 30 to 100 50 feet 7-foot span maximum 40 pounds

(2) Characteristics of tunnel

Tunnel Location Type Jet type

Jet shape
Contraction ratio
Horsepower
Velocity range, mph
Operating pressure
Energy ratio
Screen losses
Reference

8- by 14-foot gust
LMAL
Reversible single return
Open throat, adjustable
angle
Rectangular, 8 by 14-feet
Negative 2.96
75
0 to 14
Atmospheric
0.02 (approx.)
10 q (approx.)
None

(3) Primary recorded data (free model tests)

Time histories

Acceleration, pitch angle and vertical displace-

ment

Velocities

Forward speed and gust

velocity

(4) Traveling dynamic balance

Maximum forward speed Model size Natural frequency of balance Measurements 60 mph 3-foot span

130 cycles per second Lift, drag, and moment

(Copied 5/23/45, emp)

CONFIDENTIAL

NACA - Langley

24-INCH HIGH-SPEED TUNNEL

Tunnel
Location
Type
Type model

Jet type Jet shape

Jet dimensions

Jet length Contraction ratio

Operating pressure range Horsepower

Dynamic pressure range, lb/ft² Speed range, mph Mach number range

Turbulence factor Energy ratio

Reference Remarks 24-inch high-speed
LMAL
Induction, nonreturn
Two-dimensional and threedimensional
Closed throat
Circular cross section with
large chord flats
24-inch diameter (18 inches
between flats)
Approximately 16 inches
This term is not applicable as
for conventional wind tunnels.
Air flow is induced from the
atmosphere.

Atmospheric
Driven by an induction jet;
maximum operating conditions
are an induction jet chamber
pressure of 180 psi and a discharge rate of 55 lb/sec.

55 to 785
155 to 695
0.2 to 1.0 tunnel empty (speed limited by choking conditions for model tests)
1.1 (approx.)
2.05 (maximum) Decreases with decrease in Mach number. Not strictly comparable with conventional wind tunnels.
TR 646 and ACR L4L07a

(Copied 5/22/45, emp)

CONFIDENTIAL

NACA - Langley

8-FOOT HIGH-SPEED TUNNEL

Tunnel
Location
Type
Type model

Jet type Jet shape Jet dimensions

Jet length
Contraction ratio
Operating pressure
range
Horsepower
Dynamic pressure
range, lb/ft²
Velocity range, mph
Mach number range

Turbulence factor

Energy ratio
Reference
Remarks

8-foot high speed
LMAL
Single return
Tip-supported or threedimensional
Closed throat
Round (with vertical flats)
8-foot diameter (7 feet 7 inches
between flats)
1.8 diameter
9.0

Atmospheric 16,000

0 to 800 0 to 750

0 to 1.00 tunnel empty (speed limited by choking conditions for model tests)

1.01 to 1.06 (based on hot-wire measurements of longitudinal and lateral turbulence)

7.5 None

(Copied 5/22/45, emp)

COPY CONFIDENTIAL

NACA - Langley

16-FOOT HIGH-SPEED TUNNEL

Tunnel Location Type Type model

Jet type Jet shape Jet dimensions

Jet length
Contraction ratio
Operating pressure
range
Horsepower
Dynamic pressure
range, lb/ft²
Velocity range, mph
Mach number range
Turbulence factor

Energy ratio Reference Remarks 16-foot high speed
LMAL
Single return
Tip-supported or threedimensional
Closed throat
Circular (with vertical flats)
16-foot diameter (15 feet
between flats)
24 feet (1.5 diameter)
13.4

Atmospheric 16,000

O to 540 O to 525 O to 0.70 Low but not quantitatively determined 9.5 None

(Copied 5/22/45, emp)

COPY CONFIDENTIAL

NACA - Langley

MODEL SUPERSONIC TUNNEL

Tunnel Location Type Type model

Jet type Jet shape Jet dimensions

Jet length Contraction ratio

Operating pressure range

Horsepower
Dynamic pressure
range, lb/ft²
Velocity range, mph
Mach number range
Turbulence factor
Energy ratio
Reference
Remarks

Model supersonic
LMAL
Direct action, nonreturn
Three-dimensional or twodimensional
Closed throat
Rectangular
7-1/2 inches wide by 7-1/2 to
9 inches high
1-1/2 times width (approx.)
100 to 1 for smallest nozzle
minimum and 70 to 1 for
largest nozzle minimum

Stream pressures from 1/5 to 1/3 atmospheric pressure 1000

1200 to 1400 1000 to 1200 1.35 to 2.0 Not determined 1.6 None

(Copied 5/22/45, emp)

(Copied 8/20/46, jss)

CONFIDENTIAL

NACA - Langley

RECTANGULAR HIGH-SPEED TUNNEL

Tunnel
Location
Type
Type model
Jet type
Jet shape
Jet dimensions

Jet length Contraction ratio

Operating pressure range Horsepower

Dynamic pressure range, lb/ft² Velocity range, mph Mach number range

Turbulence factor Energy ratio

Reference

Remarks

Rectangular high speed
LMAL
Induction, nonreturn
Two-dimensional
Closed throat
Rectangular
L- by 18-inch (L-inch dimension
fixed, 18-inch dimension
variable)
10 inches (approx.)
This term is not applicable as
for conventional wind tunnels.
Air flow is induced from the
atmosphere.

Atmospheric
Induction type tunnel utilizing
a maximum of 15 pounds of air
per second at pressures up to
290 psi in an annular nozzle
downstream of test section.

55 to 910
155 to 915
Approximately 0.2 to 1.4 (choking prevents testing at Mach numbers in the neighborhood of 1)
Has not been determined
Approximately 1.5. This term varies over the Mach number range and is not strictly comparable with conventional wind tunnels.
Stack, John: Compressibility
Effects in Aeronautical
Engineering. NACA ACR, 1941

(Copied 5/22/45, emp)

COPY CONFIDENTIAL

NACA - Langley

FULL-SCALE TUNNEL

80

1/15-SCALE MODEL OF FULL-SCALE TUNNEL

Tunnel

Location Type Type model Jet type Jet shape Jet dimensions Jet length Contraction ratio Operating pressure range Horsepower Dynamic pressure range, lb/ft2 Velocity range, mph Mach number range Turbulence factor Energy ratio Reference Remarks

Full-scale

LMAL
Double return
Three-dimensional
Open throat
Elliptical
60 by 30 feet
56 feet
4.93

Atmospheric 8000

1.5 to 36 25 to 118 0.03 to 0.16 1.1 2.84 TR 459 1/15-scale model
of full-scale
LMAL
Double return
Three-dimensional
Open throat
Elliptical
4 by 2 feet
3.73 feet
4.93

Atmospheric 30

0 to 19 5 to 85 0 to 0.11 1.2 1.50 TR 478 Not equipped with balance

(Copied 5/23/45, emp)

(Copied 8/20/46, jss)

CONFIDENTIAL

NACA - Langley

INDUCTION AERODYNAMICS LABORATORY

Location

Floor area for test setups

Test cell Air supply LMAL

100 feet by 120 feet

22 feet by 22 feet by 118 feet 3- to 1000-horsepower blowers

		Volume blower	Pressure blower	Compressor	Volume blower & pressure blower in parallel	Volume blower & pressure blower in series	Pressure blower & compressor in series
Rated	*Capacity, C. F. M.	85,000	44,000	13,800		10.10 10.41	-
	Pressure above atmospheric, lb/ft ² Pressure below atmospheric, lb/ft ²	265	530	2,116			
		5/10	425	1,058			
Maximum flow	Capacity, C. F. M. Pressure above atmospheric, lb/ft ² Pressure below atmospheric, lb/ft ²	128,000	65,000		182,000		
		89	145		145		
		87	141		150	****	
Maximum pressure	Capacity, C. F. M. Pressure above atmospheric, lb/ft ² Pressure below atmospheric, lb/ft ²	45,000	25,000	9,000		35,000	13,800
		325	655	2,350		970	2,900
		285	500	1,110		660	1,220

^{*}Flow quantities given are corrected back to the temperature and pressure at the entrance to the blower.

(Copied 5/23/45, emp)

/namina - 1.6. jss)

CONFIDENTIAL

NACA - Langley

TWO-DIMENSIONAL LOW-TURBULENCE TUNNEL

Tunnel Location Type Type model

Jet type Jet shape Jet dimensions Jet length Contraction ratio Operating pressure range Horsepower Dynamic pressure range, 1b/ft2 Velocity range, mph Mach number range Turbulence factor Energy ratio Maximum Reynolds number Reference Remarks

Two-dimensional low-turbulence
LMAL
Single return
Two-dimensional (limited threedimensional models such as
nacelles on wing sections)
Closed throat
Rectangular
3- by 7-1/2 foot
7-1/2 feet
18:1

Atmospheric 195

0 to 65 0 to 159 0 to 0.215 1.0 3.0 1.48 × 10⁶ per foot of chord

- (a) Standard airfoil characteristics tests are made with
 24-inch chord models. Maximum lift characteristics
 cannot be obtained with
 models having a chord larger
 than 36 inches. Drag characteristics at low lift coefficients can be obtained with
 models having chords up to
 100 inches.
- (b) Turbulence of the air stream of this wind tunnel is very low. Fluctuating components of velocity are a few hundredths of 1 percent.

(Copied 5/23/45, emp)

CONFIDENTIAL

NACA - Langley

TWO-DIMENSIONAL LOW-TURBULENCE PRESSURE TUNNEL

Tunnel

Location Type Type model

Jet type
Jet shape
Jet dimensions
Jet length
Contraction ratio
Operating pressure
range
Horsepower
Dynamic pressure
range, lb/ft²
Velocity range, mph

Mach number range

Turbulence factor
Energy ratio
Maximum Reynolds number
Reference
Remarks

Two-dimensional low-turbulence
pressure
LMAL
Single return
Two-dimensional (limited threedimensional models such as
nacelles on wing sections)
Closed throat
Rectangular
3- by 7-1/2 foot
7-1/2 feet
17-1/2:1

1 to 10 atmospheres 2000

0 to 670
0 to 300 (one atmosphere)
0 to 220 (four atmospheres)
0 to 160 (ten atmospheres)
0 to 0.4 (one atmosphere)
0 to 0.3 (four atmospheres)
0 to 0.2 (ten atmospheres)
1.0
3.5
14 × 10⁶ per foot of chord
None

- (a) Standard airfoil characteristics tests are made with
 24-inch chord models. Maximum lift characteristics
 cannot be obtained with models
 having a chord larger than
 36 inches. Drag characteristics at low-lift coefficients can be obtained with
 models having chords up to
 100 inches.
- (b) Turbulence of the air stream of this wind tunnel is very low. Fluctuating components of velocity are a few hundredths of 1 percent.

(Copied 5/23/45, emp)

CONFIDENTIAL

NACA - Langley

19-FOOT PRESSURE TUNNEL

Tunnel
Location
Type
Type model
Jet type
Jet shape
Jet dimensions
Jet length
Contraction ratio
Operating pressure
range
Horsepower
Dynamic pressure
range, lb/ft²

Velocity range, mph

Mach number range

Turbulence factor
Before installation
of screen

After installation of screen

Energy ratio Reference Remarks

(Copied 5/23/45, emp)

(Copied 8/20/46, jss)

19-foot pressure
LMAL
Single return
Three-dimensional
Closed throat
Round
19-foot diameter
1-1/2 diameters
8:1

1 to 2-1/3 atmospheres 8000

12 to 175 (1 atmosphere)
15 to 250 (2-1/3 atmospheres)
70 to 260 (1 atmosphere)
50 to 210 (2-1/3 atmospheres)
0.09 to 0.34 (1 atmosphere)
0.07 to 0.28 (2-1/3 atmospheres)

1.03 from tests of 8-inch sphere (1 atmosphere)

$$\frac{\sqrt{\overline{u}^2}}{\overline{u}}$$
 0.003, $\frac{\sqrt{v^2}}{\overline{u}}$ 0.006 from hot-

wire measurements (1 atmosphere)
No data available for 2-1/3 atmospheres

No data available for 1 atmosphere
No data available from tests of
8-inch spheres (2-1/3 atmospheres)

$$\frac{\sqrt{\overline{u}^2}}{\overline{u}}$$
 0.002, $\frac{\sqrt{\overline{v}^2}}{\overline{u}}$ 0.005 from hot-

wire measurements (2-1/3 atmospheres)

7.5 None published

CONFIDENTIAL

NACA - Langley

20-FOOT PROPELLER RESEARCH TUNNEL

Tunnel Location Type Type model Jet type Jet shape Jet dimensions Jet length Contraction ratio Operating pressure range Horsepower Dynamic pressure range, 1b/ft2 Velocity range, moh Mach number range Turbulence factor Energy ratio

Reference

Remarks

20-foot propeller research
LMAL.
Double return
Three-dimensional
Open throat
Round
20-foot diameter
1.75 diameters
7.97
Atmospheric
1800

0 to 31 0 to 110 0 to 0.14 1.2 1.39 TR 300

(Copied 5/23/45, emp)

CONFIDENTIAL

CONFIDENTIAL

NACA - Langley

FLUTTER TUNNEL

Tunnel Location Type Type model Jet type Jet shape Jet dimensions Jet length Contraction ratio Operating pressure range Horsepower Dynamic pressure range, lb/ft2 Velocity range, mph Mach number range Energy ratio Turbulence factor Reference Remarks

Flutter
LMAL
Single return
Three-dimensional
Closed throat
Circular
4-1/2 foot diameter
9 feet
8.93

0 to 1.8 atmospheres (approx.)

O to 812 | Calculated assuming
O to 975 | energy ratio equal to
O to 1.00 | 8-1/4 to 1 atmosphere
pressure at throat

- 1. Two mobile interchangeable test sections:
 - (a) Four-component hydraulic balance test section
 - (b) Flutter test section, 17 viewing portholes
- 2. Charge cooled by two alternate methods:
 - (a) Exchanging portion of charge for atmospheric air
 - (b) Passing portion charge through heat exchanger
- Entire tunnel designed to hold 0 to 1.8 atmospheres of Freon 12 as testing medium.

(Copied 5/22/45, emp)

CONFIDENTIAL

NACA - Langley

ATMOSPHERIC WIND TUNNEL

Tunnel Location Type Type model

Jet type Jet shape Jet dimensions Jet length Contraction ratio Operating pressure range Horsepower Dynamic pressure range, lb/ft Velocity range, mph Mach number range Turbulence factor Energy ratio Reference Remarks

Atmospheric wind
LMAL
Single return - horizontal
Three-dimensional, twodimensional, and partialspan (reflection plane)
Closed throat
Rectangular
7 by 10 feet
11 feet
4.0

Atmospheric 200

0 to 16.37
0 to 80
0 to 0.11
1.6
1.4
TR 412 and TR 664
Tunnel equipped with six-component balance and scale system

(Copied 5/22/45, emp)

(Copied 8/20/46, jss)

CONFIDENTIAL

NACA - Langley

300-MILE-PER-HOUR 7- BY 10-FOOT WIND TUNNEL

å

HIGH-SPEED 7- BY 10-FOOT WIND TUNNEL

Tunnel

Location Type models

Jet type Jet shape Jet dimensions Jet length Contraction ratio Operating pressure range Horsepower Dynamic pressure range, lb/ft2 Velocity range, mph Mach number range Turbulence factor Energy ratio Reference Remarks

300-mile-per-hour 7- by 10-foot

LMAL
Single return
Three-dimensional,
two-dimensional,
and semispan
Closed throat
Rectangular
7 by 10 feet
15 feet
14

Atmospheric 1600

0 to 200 0 to 300 0 to 0.40

7

High-speed 7- by
10-foot (under
construction)
LMAL
Single return
Three-dimensional,
two-dimensional,
and semispan
Closed throat
Rectangular
7 by 10 feet

Atmospheric 10,000

15 feet

14

A feature of both tunnels is contained in a remotely controlled survey apparatus which is constructed as an inherent part of the tunnels and which permits the rapid exploration of air flow behind models. Both tunnels equipped with six-component balance systems. The high-speed tunnel is to be provided with an adjustable test section.

(Copied 5/23/45, emp)
(Copied 8/20/46, jss)

CONFIDENTIAL

NACA - Langley

FREE-FLIGHT TUNNEL

Tunnel Location Type Type model Jet type Jet shape Jet dimensions Jet length Contraction ratio Operating pressure range Horsepower Rated 5-minute rating Dynamic pressure range, 1b/ft2 Velocity range, mph Mach number range Turbulence factor Energy ratio Reference Remarks

12-foot free flight
LMAL
Open return
Three-dimensional dynamic
Closed throat
12-sided polygon
12-foot (across flats)
1.25 diameters
4

Atmospheric

280 570

0 to 9 0 to 60 0 to 0.08 1.6 0.5 TN 810

Free-flying remotely controlled dynamic models are tested in the tunnel. The longitudinal axis of the test section of the tunnel can be tilted through a range of angles corresponding to 15° climb and 45° glide. The tunnel is housed in a 60-foot steel sphere which provides uniform return passage at all angles of tilt.

(Copied 5/22/45, emp)

(Copied 8/21/46, jss)

CONFIDENTIAL

NACA - Langley

4- BY 6-FOOT TUNNEL

Tunnel Location Type Type of model

Jet type Jet shape Jet dimensions Jet length Contraction ratio Operating pressure range Horsepower Dynamic pressure range, 1b/ft2 Velocity range, mph Mach number range Turbulence factor Energy ratio Reference Remarks

4- by 6-foot
LMAL
Single return - vertical
Three-dimensional, twodimensional, and partialspan (reflection plane)
Closed throat
Rectangular
4 by 6 feet
4.5 feet
3.37

Atmospheric 50

O to 15 O to 76 O to 0.11 1.93 1.4 TR 387 and TN 734 Tunnel equipped with threecomponent balance and scale system

(Copied 5/22/45, emp)

(Copied 8/21/46, jss)

CONFIDENTIAL

NACA - Langley

20-FOOT FREE-SPINNING WIND TUNNEL

å

15-FOOT FREE-SPINNING WIND TUNNEL

Tunnel	20-foot free	15-foot free		
	spinning	spinning_		
Location	LMAL	LMAL		
Туре	Vertical with	Vertical without		
	annular return	direct return		
Type model	Dynamic	Three-dimensional		
Jet type	Closed throat	Closed throat		
Jet shape	12-sided polygon	12-sided polygon		
Jet dimensions	20 feet across	15-feet across		
10-20-00-00-00-00-00-00-00-00-00-00-00-00	flats	flats		
Jet length	1.5 diameter	1.26 diameter		
Contraction ratio	4.0	2.9		
Operating pressure	4.0			
range	Atmospheric	Atmospheric		
Horsepower	1101110 0 01101 10	110110001101101		
Rated	400	150		
5-minute rating	1300	260		
Dynamic pressure	0 to 10	0 to 4		
range, 1b/ft2	0 00 10	0 60 4		
Velocity range, mph	0 to 62	0 to 40		
Mach number range	0 to 0.08	0 to 0.05		
Turbulence factor				
Energy ratio	0.52	0.35		
Reference		TR 557		
D				

(Copied 5/23/45, emp)

Remarks

(Copied 8/21/46, jss)

CONFIDENTIAL

NACA - Langley

STABILITY TUNNEL

Tunnel Location Type Type models

Jet type Jet shapes Jet dimensions

Jet length
Contraction ratio
Operating pressure
range
Horsepower
Dynamic pressure
range, lb/ft²
Velocity range, mph
Mach number range
Turbulence factor
Energy ratio
Reference
Remarks

Stability LMAL Single return Three-dimensional, two-dimensional, and semispan Closed throat (interchangeable jets) Round Rectangular Square 6.3-foot 6 by 2-1/2 6 by 6 feet feet diameter 22 feet 6 feet 22 feet 21.6 10.5 Atmospheric Atmospheric Atmospheric 600 600 600 0 to 125 0 to 125 0 to 350 0 to 220 0 to 220 0 to 360 0 to 0.29 0 to 0.29 0 to 0.47 1.04 1.04 1.0 5.0 5.0 17

An unusual feature of the 6- by 6-foot square test section of the stability tunnel is the fact that the sides of the test section are adjustable. The sides can be adjusted to different radii of curvature so that models can be tested in curved flow simulating flight in curved paths of different radii.

The 6.3-foot diameter round test section is provided with rotating vanes. The rate of rotation can be adjusted as to give a predetermined twist to the air stream. In this way, different rates of roll can be simulated while the model is stationary and the different aerodynamic forces can easily be measured by the balance system.

(Copied 5/23/45, emp)

CONFIDENTIAL

NACA - Langley

INSTRUMENT RESEARCH WIND TUNNEL

Tunnel Location Type Type model Jet type Jet shape Jet dimensions Jet length Contraction ratio Operating pressure range Horsepower Dynamic pressure range, lb/ft Velocity range, mph Mach number range Turbulence factor Energy ratio Reference Remarks

Instrument research
LMAL
Open return
Three-dimensional
Closed throat
Round
15-inch diameter
28 inches
20:1

14.7 to 11 1b/in² (approx.)

3.6 to 520 (estimated)
40 to 500 (estimated)
0.052 to 0.65 (estimated)
Not known
3 (estimated)
None
Especially built for testing
small components of instruments to obtain the characteristics, from an instrumental point of view, as
affected by the air stream
velocity and direction.

(Copied 5/22/45, emp)

CONFIDENTIAL

NACA - Langley

LOW-VELOCITY INSTRUMENT TUNNEL

Tunnel

Location Type Type model Jet type Jet shape Jet dimensions Jet length Contraction ratio Operating pressure range Horsepower Dynamic pressure range, lb/ft2 Velocity range, mph Mach number range Turbulence factor Energy ratio Reference Remarks

Low-velocity instrument (old gust tunnel)
LMAL
Open return
Three-dimensional (instrument)
Closed throat
Square
36 inches by 36 inches
36 inches
2.6:1

Atmospheric

0 to 35 (estimated)

Not known Not known None This tunnel was built by remodeling the old gust tunnel. It is shared with the Fluids and Gas Dynamic Analysis Section. The test section and diffuser section are removable and interchangeable with a cascade section belonging to FGDA. It is used by Instrument Research Division for tests of low-velocity instruments, including hot-wire anemometers and other wind direction and velocity instruments.

(Copied 5/22/45, emp)